
Received: 5 February 2016 Revised: 5 September 2016 Accepted: 10 November 2016

DOI: 10.1002/dac.3252

R E S E A R C H A R T I C L E

Implementing PacketEconomy: Distributed money-based QoS in
OMNET++

Remous-Aris Koutsiamanis Pavlos S. Efraimidis

Department of Electrical and Computer

Engineering, Democritus University of Thrace,

Xanthi, 67100, Greece

Correspondence
Remous-Aris Koutsiamanis, Department of

Electrical and Computer Engineering, Democritus

University of Thrace, 67100 Xanthi, Greece.

Email: akoutsia@ee.duth.gr

Summary
In this work we examine how quality of service (QoS) can be achieved in a real

network by allowing packets to coordinate using fiat money in a market econ-

omy for router queue positions. In this context we implement and evaluate the

PacketEconomy mechanism in the discrete-event simulator OMNET++, using the

standard INET library for simulating Internet Protocol version 6 networks and eval-

uate throughput, end-to-end delay, and packet drop rates. Additionally, we examine

whether the flows have a game-theoretic incentive to participate in the market

economy, while covering both Transmission Control Protocol– and User Datagram

Protocol–based flows in multiple different cases. The mechanism achieves QoS by

allowing packets with different QoS requirements waiting to be served in router

queues to mutually trade positions by exchanging money. Notably, each flow can

independently and selfishly define the ask and bid prices of its packets. In this man-

ner, packets can coordinate to be able to self-regulate their packet-specific access to

shared network resources. The results are promising and show that the innovative

PacketEconomy mechanism provides robust, effective, and fine-grained QoS while

maintaining end-user control for both rate- and window-based flows.
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1 INTRODUCTION

The Internet provides the infrastructure for multiple inde-

pendent network traffic flows. This infrastructure and its

resources are limited and shared between these flows, each

of which attempts to optimize its own performance. The

problem, thus, is challenging since the aim is to allocate

the limited resources in a manner both efficient (to min-

imize waste) and tailored to the individual flow require-

ments (to improve user experience). As a result of entities

sharing a limited common resource, with individual opti-

mization targets, competition arises between these flows.

Thus, a game-theoretic approach can be used to examine the

issues that arise, an approach that has been taken in several

works with some of the early ones being,1,2 and overviews

of which are presented in the works of Altman et al and

Nisan et al.3,4 Congestion games in particular have also been

addressed, with focus on the Transmission Control Protocol

(TCP)/Internet Protocol (IP), in several works.5–8 However, in

previous approaches, the interaction between flows has been

very limited and mainly indirect. Each flow typically can only

control the amount and timing of the data it sends. This in turn

affects the shared network resources available for both this

and other flows. In game-theoretic terms, the current strate-

gies available to flows can only control the size of packets

and the rate of their transmission. In this work, we present

an implementation of PacketEconomy, a distributed quality

of service (QoS) mechanism for network packets, aiming

at allowing high performance, network-wide, fine-grained,

user-controlled QoS. PacketEconomy comprises 2 aspects.

Firstly, it allows the flows to formulate their strategies in

a more direct and clear way by using packet utility func-

tions to express and packet budgets to “finance” their QoS

requirements. Secondly, it allows the flows to interact while
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waiting in router queues, providing opportunities for mutu-

ally beneficial exchanges between packets. Additionally, we

implement the platform in a nonintrusive way, allowing for

gradual and opt-in participation, without affecting flows that

do not participate in the PacketEconomy. This approach is

possible because recently, router hardware has become more

amenable to customization and programmability as evidenced

by the adoption of software-defined networking, especially in

newer networking technologies,9,10 as well as by work to make

routers able to execute custom and complex schedulers, for

example, using Domino.11

In this work, we present a realistic implementation

of PacketEconomy, within the OMNET++ discrete-event

simulator,12,13 using the INET network simulation library14

and the experimental evaluation of the implementation. In

Section 2 we present the related work and in Section 3 an

overview of the theoretical model underpinning this imple-

mentation, described in more detail in the work of Efraimidis

and Koutsiamanis.15 In Section 4 we present the details of

the implementation in OMNET++, used in the experiments.

Afterwards, we describe the experimental setup in Section 5,

and we present and discuss the experimental results in Section

6. We then describe the game-theoretic aspects of Pack-

etEconomy in Section 7. Finally, we conclude with overall

remarks in Section 8.

2 RELATED WORK

The general problem addressed by our work is that of provid-

ing QoS for network flows. Within that context, we focus on

solutions that work when assuming selfish competitive flows,

instead of cooperating ones, since in practice the flows are

created by independent and selfish end users. Our proposal

comprises using money and packet trades as a coordination

mechanism at the microeconomics level, described in detail

in the work of Efraimidis and Koutsiamanis.15

If in the problem addressed the game-theoretic aspects are

ignored, then PacketEconomy still provides a simple, fast, and

hardware acceleratable solution. These characteristics are not

merely an advantage of our solution, but are hard require-

ments imposed on any potential solution by the nature of the

problem, i.e., processing of large numbers of packets with

minimal overheads on routers with limited resources. Other

works trying to solve the same problem include a number of

studies16–22 with a good overview presented in the work of

Srikant23; however, it is important that nondecentralized, typi-

cally computationally inefficient, and complex-to-implement

algorithms are avoided.

Another aspect concerns the role of the service providers,

which PacketEconomy remains agnostic of, such that the

providers implementing the mechanism in their routers are

relegated to “dumb pipes” with no strategic interests (as far

as providing the service to their users is concerned) while the

strategic interaction takes place between network end users.

On the other hand, some approaches24–26 model the problem

of QoS from the standpoint of efficiency or performance for

network service providers, a problem certainly interesting

and important, but which is not necessarily aligned with the

interests of the end users.

If QoS is to be performed, a means of dynamically mod-

ifying the end-to-end delay is needed, which affects both

rate- and window-based flows. End-to-end delay is the sum

of transmission delay (the time taken to transmit the data of

a packet over the network links, which relates to link band-

width), propagation delay (the time taken for the signal to

propagate between link end points, which relates to the phys-

ical medium and the distance of the link), processing delay

(the time taken within routers to process the packet headers),

and queuing delay (the time spent waiting in router queues).

Transmission delay can be changed by physically changing

the network and thus changing the bandwidth available; how-

ever, this is not something that can be varied dynamically.

Propagation delay is also a physical property and cannot be

changed dynamically. Processing delay is also rather inflex-

ible to change, since it is a required step for every packet

passing through a router. The only part of end-to-end delay

that remains and that can relatively easily be varied dynam-

ically is queuing delay. By manipulating the order in which

packets are served, it is possible to increase or decrease queu-

ing time and, as an extension, end-to-end delay. Moreover, in

highly congested networks, where QoS is more needed, queu-

ing delay represents a larger part of the total end-to-end delay.

Since packets spend a significant portion of their time waiting

in packet queues within routers, we claim that this would be an

ideal place to perform coordination and provide QoS. A com-

mon alternative formulation considers the routing problem,27

i.e., not deciding the order of service in queues but deciding

on which output queue and thus effectively which network

path to take to implement QoS. This framing is also often

coupled with the network service provider-centric view of the

problem. In this case, taking different routes impacts player

utility by experiencing different congestion levels, delays, and

bandwidth limitations over different network links. However,

we would like to provide end-to-end, user-controlled QoS,

but typically, end users are not able to control routing deci-

sions in routers. Thus, we expect that our focus on schedul-

ing in the router queues, maintaining the ability to affect

both delay and throughput, is more amenable to a realistic

implementation.

We reinforce our commitment to the importance of real-

ism by providing a proof-of-concept implementation of our

solution in OMNET++. This implementation consists of

additional logic at the router and the end points, operates on

Internet Protocol version 6 (IPv6) flows, and uses an addi-

tional extension IPv6 header on each packet. We chose to

make these assumptions and impose limitations on our imple-

mentation to be able to maintain practicality. In contrast,

other approaches result in simpler solutions, but are coupled

with the disadvantages of being less realistic and harder to
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implement, because of the abstractions performed that fail to

take into account practical concerns.

We have also taken into account the fact that changes in

network infrastructure are slow, especially where nonpro-

grammable routers are used. To address this issue, we have

designed the mechanism in such a way that PacketEconomy

can offer advantages even if only a part of the network partic-

ipates (end users or routers). Thus, our solution allows for a

piecemeal introduction, taking advantage of the new features

where available, and falling back to the default implementa-

tion where not. More specifically, nonparticipating end users

will experience service as if no QoS was being applied to their

packets, although they do have a positive incentive to par-

ticipate. Additionally, different segments of a network path

may not support our solution (non-PacketEconomy routers),

but even if only a subset of the segments does, then, any

packet traveling within those segments will take advantage of

our solution within them. This contrasts with solutions that

require a total switch to the alternative mechanism.

3 THE PACKETECONOMY MODEL

This section provides an overview of the theoretical Pack-

etEconomy model. A more detailed description of Pack-

etEconomy can be found in the work of Efraimidis and

Koutsiamanis.15 PacketEconomy comprises a network model

with selfish flows, a queue that supports packet trades, a cur-

rency, and a specific economic goal. The solution concept is

the Nash equilibrium, a profile of the game-theoretic model

in which no player has anything to gain by changing only his

or her own strategy unilaterally. In particular, the solution has

the individual rationality property, i.e., the players have an

incentive to participate in PacketEconomy. This means that

players have nothing to lose and potentially something to gain

by participating.

3.1 The network model

We assume a network with router R and a set of N flows, as

shown in Figure 1. The router R has a queue Q with a maxi-

mum capacity of |Q| packets and operates in rounds. In each

round, the first packet (the packet at position 0 of the queue)

FIGURE 1 The network model illustrating the flows, their packets, the

router, and the queue

FIGURE 2 The state of a router queue in 2 successive rounds. In round t, 2

trades take place: one between the packet pair (p1,p2) and one between the

pair (p4,p7)

is served, and at the end of the round, it reaches its destina-

tion. Packets that arrive at the router are added to the end of

the queue.

3.2 Packet trades

At the beginning of each round, position 0 of the queue has

been freed, and thus, all packets in the queue are shifted one

position ahead. A packet that enters the queue in this round

occupies the first free (after the shift) position at the end of the

queue. After the shift, the packet that has reached position 0 is

served, while the other packets in the router queue are simply

waiting. These idle packets can engage in trades. During each

router round, a fixed number P of trading periods take place.

In each trading period, the idle packets are matched randomly

in pairs with a predefined pairing scheme. Each packet pair

can perform a trade, as shown in Figure 2, provided that the

negotiation performed between them leads to an agreement.

The way the trades take place at a microeconomic level is that

agents meet in random pairs and can make trades.

3.3 Packet delay

The delay d of a packet p that starts at position k of the 0-based

queue and does not make any trades is k + 1 rounds (Figure 3).

If, however, the packet engages in trades and buys a total of rb
router queue positions and sells rs positions, then its delay dp,

including the time to be served, becomes dp = k + 1 + rs − rb
positions. A packet may have an upper bound dp,max on its

delay; for delays larger than dp,max, the value of the packet

(Section 3.4) becomes 0, and the packet will not voluntarily

accept such delays (i.e., it will not sell).

3.4 Packet values

For each packet p, there is a decreasing function dp that deter-

mines the value of p, given its delay d. The value function

of each flow must be encoded onto each packet, and its value

can be calculated anytime during the packet’s journey via

the dp(d) function. When calculating the value of a packet,

the estimated service time in the current queue is used (see

Section 4.5.4 for more details).
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FIGURE 3 Components of packet delays in router queues

3.5 Inventories and values

Every time a packet is delivered in time, wealth is created for

the flow that owns the packet. Each packet p has an inven-

tory Ip(t) containing 2 types of indivisible goods or resources:

the packet delay dp(t) and the money account mp(t). Note

that delay bears negative value, whereas money represents

positive value.

We refer to the value of the packet delay as the packet value
and to the value of the money account as the packet budget.
Furthermore, we define the notion of the packet benefit as

the sum of the value of a packet and its budget. Then we use

the benefit concept to define the utility function of the packet

(described in Section 4.1).

The inventory also contains the current position posp(t) of

the packet in the queue, if it is currently waiting in one. When

the packet reaches its destination, the contents of the inventory

of the packet are used to determine its utility.

3.6 Trades

The objective of each packet is to maximize its utility. Thus,

when 2 packets are paired in a trading period, their invento-

ries and their trading strategies are used to determine if they

can agree on a mutually profitable trade, in which one packet

offers money and the other offers negative delay. The obvious

prerequisite for a trade to take place is that both packets prefer

their post-trade inventories to their corresponding pre-trade

inventories. For this to be possible, there must be “surplus

value” from a potential trade. This value is the difference in

benefit between the 2 packets if they perform the trade, and it

results from the different utility functions of the packets and

the different time frames in their flight time that the trade will

affect. The “surplus value” is easily computed and involves

no negotiation between the packets; each packet provides its

trade price, and if the bid price is higher than the ask price,

the trade takes place. In that case, both packets can benefit,

i.e., increase their utility, if they come to an agreement. We

assume a simple price agreement procedure whereby the final

trading price will be the mean of the ask and bid prices. We

also stress that both the bid and ask prices for each packet are

determined via the same utility function, i.e., each packet has

one utility function that is used both when selling and when

buying positions.

4 IMPLEMENTATION

In this section we describe the implementation of the PacketE-

conomy model on the basis of the OMNET++ discrete-event

simulator.

4.1 Packet utility functions

The theoretical model described in the work of Efraimidis and

Koutsiamanis15 uses linear packet utility functions as exam-

ples, but in general any positive and monotonically decreas-

ing function can be used. We have generalized the function

definition to a larger class of functions to allow flows to

express more complex QoS requirements and also to illustrate

the generality of our overall approach. For our experiments,

we have decided on the following form for the packet utility

functions with 3 parameters. The utility function is defined as

dp(t) =
⎧⎪⎨⎪⎩

b − atc 0 ⩽ t < c
√

b
a

0 t ⩾ c
√

b
a

with b ⩾ 0 and a, c > 0

(1)

where t is the time that has passed since the packet has been

sent and a, b, and c are the parameters that define the start-

ing point (at t = 0) for the utility as well as the rate of

loss of utility as time passes. Once the utility reaches 0, at

t = t0, it decreases no more. The described utility function

is monotonically decreasing over t⩾0. We have selected this

function form because it allows for easy calculation of the t0
point, it also allows sufficient flexibility in defining the util-

ity function, it only requires 3 parameters, and for specific

values of c, it can be efficiently implemented directly in hard-

ware. Although any number of parameters can be used, since

the parameters need to be carried along with the packet, a

trade-off between flexibility and network overhead needs to

be made. A few examples of the packet utility functions that

are possible using this function form are presented in Figure 4.

4.2 Compensation price

When 2 packets perform a trade, each one has to specify its bid

or ask price, depending whether it is a buyer or seller. To be

able to specify this price, each packet needs to calculate how

much utility will be gained or lost if the trade takes place. An

analysis on the optimal compensation prices or rate-based and

window-based flows when linear utility functions are used

is presented in the work of Efraimidis and Koutsiamanis.15

This work generalizes which kinds of utility functions can

be used in the manner described by Equation (1). Consider a

packet that, without participating in the trade, has delay dp(t1)

and a balance of mp(t1), where t1⩽t0 and t2⩽t0. If it partic-

ipates in the trade, it will receive a new estimated delivery

time dp(t2) and a balance mp(t2) = mp(t1) + 𝜌. For rate-based

flows, the total benefit must be the same or higher; thus, the

compensation price 𝜌 becomes
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FIGURE 4 Example packet utility functions. The point where the functions meet the t axis is t0

dp(t1) + mp(t1) = dp(t2) + mp(t2) ⇐⇒

b − atc
1
+ mp(t1) = b − atc

2
+ mp(t1) + 𝜌 ⇐⇒

𝜌 = a
(
tc
2
− tc

1

)
.

(2)

As described in the work of Efraimidis and Koutsiamanis,15

window-based flows have to wait for an acknowledgment of

receipt of a packet to be able to send another packet. There-

fore, delaying a packet not only affects this packet’s benefit

but also the next one’s that will also be additionally delayed.

Taking this behavior into account, for window-based flows

the total benefit rate needs to be the same or higher; thus, the

compensation price is

dp(t1) + mp(t1)
t1

=
dp(t2) + mp(t2)

t2
⇐⇒

b − atc
1
+ mp(t1)
t1

=
b − atc

2
+ mp(t1) + 𝜌

t2
⇐⇒

𝜌 =
b(t2 − t1)+a

(
t1tc

2
− tc

1
t2
)
+mp(t1)(t2−t1)

t1
(3)

It follows that 𝜌 < 0 when the packet is a buyer and 𝜌 > 0

when it is a seller.

4.3 PacketEconomy as a service

PacketEconomy provides QoS as a service to the end point

users. To do so, it firstly requires one or more intermedi-

ate routers that are able to perform trades. These routers do

not need any additional configuration from the end points,

and they can function completely independently, while the

PacketEconomy mechanism itself is also stateless. Access to

an accurate time source is useful but not required. Secondly,

at the end points, besides the necessary modules, 2 param-

eters must be given, presented in Figure 5. The mandatory

parameters are the priority values for each flow as well as the

available budget. The priority parameter can be given directly

by the user or can be derived automatically from a higher-level

configuration. The budget needs to be either given by the

user or it can be retrieved, via an appropriate network service,

directly by the budget provider, usually the Internet Service

Provider. Optionally, PacketEconomy can use feedback from

previous traffic as well as the given priority and budget to be

able to deduce the appropriate utility function parameters.

4.4 Operation overview

The overall PacketEconomy operation is presented in

Figure 6. At the sending end point A, a user decides upon

the high-level QoS requirements for flows, which can be

predefined, on the basis of application profiles, or have oth-

erwise provided default values, in the form of flow priorities.

These are then first converted to relatively static delay and/or

throughput QoS requirements. The requirements in turn are

then converted to more dynamic utility function parameters

(a,b,c) as well as a packet budget. The parameters and bud-

get are used when the flow upon which QoS is applied sends

an IPv6 packet. Before being sent from the sending end point

A, a PacketEconomy hook handles the normal IPv6 packet

and attaches a PacketEconomy extension header containing

the utility function parameters and related PacketEconomy

data. This header is then used to perform trades in any

PacketEconomy-enabled routers along the path to the receiv-

ing end point. When pairing packets, trades are only per-

formed if both packets in a pair are PacketEconomy-enabled,

otherwise the trade is directly rejected. At the receiving point

B, a PacketEconomy hook handles the packet, removes the

extension header, and delivers the packet as normal to the

receiving flow end point. It also records relevant network and

utility statistics. When the receiving end point B has to send

a packet to the original sending end point A, it attaches a

PacketEconomy extension header with feedback. This is even-

tually received at the original sending end point A, where the

feedback is stripped and recorded. The next time a packet has

to be sent, the new feedback will be used to select appropriate

utility function parameters and budget values.

4.4.1 Adaptivity
Each end point needs to track both its own, as well as

the other, end point’s budget and network performance.

Specifically, each end point needs to track the total packet

benefit from received packets, which constitutes a form of

return-on-investment information, and attach this information
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FIGURE 5 Viewed as a service, PacketEconomy requires priority and available budget as inputs. Optionally, network and utility statistics feedback can be

used to deduce utility function parameters

FIGURE 6 Overview of the operation of PacketEconomy. The PacketEconomy hook attaches and detaches the custom extension header at the end points.

State is maintained to be used in deciding which utility function parameters and budget value to use. Routers perform trades statelessly, ignoring

non-PacketEconomy pairs. Feedback is sent from the receiving end point B to the original sending end point A to inform its parameter selection

when sending packets to the other end point. The feedback

from the opposite end point, along with information regard-

ing the available budget and the flow priorities, allows each

end point to adapt to changing network conditions. When net-

work congestion increases, depending on the number of flows

and their priorities, an end point may choose to spend its bud-

get differently, taking into account both the priorities of each

flow and how well spent the budget is for each flow. The user

may also have a means of requesting additional budget from

their provider to be able to support their QoS needs.
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4.5 Technical details

The core of PacketEconomy has been implemented as a C++

library, independent of OMNET++, with a clean interface

and implementation. We intended for the library to be used

in OMNET++ initially, but we envisioned the ability to use

the library with either other simulators, such as ns-2 or ns-3,

or with real networking stacks, such as that of the Linux OS,

hooking into it via a user-space networking hook. We also

intend to provide online access to a more refined version of it

via an open source license. For this implementation, version

4.6 of the OMNET++ simulator has been used in conjunction

with version 3.2.0 of the INET networking library. The part

of the PacketEconomy model that is specific to OMNET++

has been implemented in the form of 2 OMNET++ modules,

extending preexisting INET modules. The first one extends

the standard IPv6 stack module, to be able to read, write,

and process the PacketEconomy IPv6 headers on incom-

ing and outgoing packets. This module is only used on end

point nodes. The second extended module is an alternative

queue that is used in Ethernet interfaces for outgoing pack-

ets. This module implements the PacketEconomy trading on

the queued packets and is used only in routers. The module

IPv6PE extends inet.networklayer.ipv6.IPv6
and is used within moduleStandardHost6PE that extends

inet.nodes.ipv6.StandardHost6.

4.5.1 Extension header description
The PacketEconomy extension header contains the fields that

encode the dp packet utility function (the a, b, and c parame-

ters) as well as the available budget. Each field is represented

by a 32-bit IEEE 754 floating point number, and as a result,

the overhead involved is 128 bits. In addition, the IPv6 exten-

sion header itself requires another 16 bits; thus, a total of

144 bits or 18 bytes are required. To decrease this overhead,

a smaller floating point number representation may be used

with some numeric accuracy compromise. In this version of

the experiments, no adaptivity is implemented, and thus, the

feedback header is not used on returning packets. If it were to

be implemented, two 32-bit IEEE 754 floating point number

fields would be the maximum required: one for the accumu-

lated budget and one for the estimation of the average one-

way delay.

4.5.2 The TCP/IP stack at end points
At the end points the TCP/IP stack has been modified mainly

at the Network/Internet layer. In particular, the Internet layer

is used as the central point where the appropriate per packet

processing is performed. We only intervene at the IPv6 layer

where we attach/detach the IPv6 extension header contain-

ing the PacketEconomy information. Additionally, the flow

priority and packet utility function parameters are defined

within each application, although this does not mean that

these parameters are considered to be part of the application

layer in the network stack; they are placed there for reasons

of implementation simplicity. These definitions are used as

packets pass through the Internet layer. Finally, the link layer

is unmodified and unused.

4.5.3 The TCP/IP stack at routers
Within PacketEconomy-enabled routers, we only modify the

standard output router queues, thus avoiding any interaction

with the routing functionality itself. In general, we manage

the queue as normal, but allow PacketEconomy trading to

be performed between IPv6 packets with the PacketEconomy

extension header present. When trading is successful for a pair

of packets, only their order and their PacketEconomy exten-

sion header are modified. The link layer is unmodified and

unused. Also, depending on the queue admission policy used,

when packets are dropped they are done so before entering the

queue, and thus, no money is lost from the economy during

PacketEconomy trading.

Specifically, when a new packet arrives it is added to the

queue, as it would normally be. Also, packets are dequeued

and sent by the queue as they would normally be. All Pack-

etEconomy processing is performed on the queue during the

time frame within which a packet is being sent. In the sim-

ulation, one trade round is performed per packet sent by the

queue; however, this can be changed if necessary.

The packets in the queue are defined as pi where

i ∈ {0, 1,… , |Q| − 1} and |Q| is the size of the queue each

time a trade round is performed. The first packet (p0) is con-

sidered to be the one being sent and thus does not participate

in the trades. Thus, packets ptr = (p1, p2,… , p|Q| − 1) partic-

ipate in trades. If a packet arrives during the trade round, it

will be held but will not participate in the currently execut-

ing trade round. The sequence of the packets in the queue is

not used when pairing them; instead, the participating packet

sequence is permuted randomly yielding p′
tr. It should be

noted that this permutation does not affect the actual sequence

of the packets in the queue, as it just a part of the pairing

scheme. Afterwards, the trading pairs are created by tak-

ing sequential neighboring and non-overlapping trading pairs:

Ti = (p′
2i, p

′
2i+1

), where i ∈ {1, 2, … , ⌊(Q − 1)∕2⌋}. The

trading negotiation and exchange is performed as described

in the work of Efraimidis and Koutsiamanis.15 However, in

the course of taking PacketEconomy from a theoretical model

to a real network implementation, some issues appeared that

had to be addressed. Firstly, the random nature of the packet

pairings will under normal conditions produce out-of-order

packet sequences. This negatively affects flows, especially

window-based flows such as TCP, which will reduce their

throughput by assuming the reordering to be indicative of

adverse network conditions. Thus, reordering prevention has

been implemented such that trades do not result in packets

of the same flow being serviced in a non-First-In-First-Out

(FIFO) manner. This is implemented efficiently using the

HL-Hitters mechanism described in the work of Koutsiamanis



8 of 17 KOUTSIAMANIS AND EFRAIMIDIS

and Efraimidis.28 Secondly, in contrast to another study,15

trades are directly rejected when the pair of packets belong to

the same flow because allowing them constitutes a waste of

computational effort in the context where all the packets of the

same flow used the same utility function parameters. Finally, a

game-theoretic concern has been addressed by directly reject-

ing trades when the buyer packet is larger than the seller

packet (discussed further in Section 7.2).

It is also implied by the definition that if the number of par-

ticipating packets is odd, then one packet will not participate,

chosen randomly. Afterwards, the packet trades are attempted

for each pair. In the simulation these are performed sequen-

tially, but a hardware implementation could easily implement

them in parallel since each packet pair is independent from

the other pairs.

One issue that may be raised is the computational cost of

inspecting IPv6 extension headers, required in this implemen-

tation. If this cost is prohibitive, it would make sense to only

execute PacketEconomy on routers that are closer to the edges

of the network, since the transmission speed is typically lower

there and thus the packet rate needed to be served is also lower

and where congestion is typically higher because of the net-

work practices service providers typically implement, such as

high contention ratio.

4.5.4 Time source considerations
PacketEconomy uses time measurements to be able to decide

the compensation prices of packets during trading sessions

within routers and when packets are received at end points.

This is indicated by the utility function dp in Equation (1)

being a function of time (t).
An accurate time source in both end points and intermedi-

ate routers aids in the determination of the total delay of the

packet since its original sending time. Its availability allows

for measuring the total time that has passed since the packet

was sent from its sending end point. In the OMNET++ imple-

mentation, we have used the global time source provided by

the simulator.

In real networks a global time source is not possible, but

network nodes are often synchronized to within a few mil-

liseconds using protocols such as the Network Time Protocol.

Under such conditions, PacketEconomy would be able to

operate since the time to reach the end point is used, which is

typically much larger.

If even this level of clock synchronization is not available,

there is a fall-back option possible, which calculates the time

spent at each hop incrementally. At each hop, the time spent is

the sum of the processing delay, the queuing delay, the trans-

mission delay, and the propagation delay. The first 2, i.e., the

processing and queuing delay, can be calculated accurately by

the host or router internal clock, with no requirement of time

synchronization with other hops. The transmission time can

be estimated very accurately (especially for wired or optical

links) by the transmitting interface given the packet’s length

and the interface’s bandwidth. Finally, the propagation delay

is not typically known a priori by interfaces, but it can be esti-

mated when it becomes significantly large (eg, by using an

Internet Control Message Protocol ping packet). The sum of

these delays can be added by each hop to the total time spent

field in the PacketEconomy packet extension header.

5 EXPERIMENTAL SETUP

In this section the setup for the experiments is described

including which parameters are used and how they are com-

bined. For the experiments we have selected a representative

set of queue admission policies (DropTail and Random Early

Detection [RED]29), priority policies (PacketEconomy and

Deficit Round Robin [DRR],30 and Strict Priority [SP]), flow

types (TCP and User Datagram Protocol [UDP]), and other

characteristics. We now present the used policies in brief. The

DropTail admission policy, also known as First Come First

Serve with a maximum size, admits packets in the order they

arrive and drops packets if the queue occupancy reaches the

maximum size.

The RED admission policy works by maintaining the cur-

rent average queue occupancy. It uses a minimum and a

maximum occupancy threshold. When the queue occupancy

is within these thresholds, an arriving packet is dropped with

increasing probability. If the maximum threshold is exceeded,

then the packet is always dropped.

The DRR scheduling policy is an efficient (O(1)) approx-

imation of Weighted Fair Queuing that in turn is a general-

ized version of fair queueing allowing for different shares of

throughput to be given to different flows. It operates by using

different queues for each separate flow class and serves pack-

ets for each class’ queue in a round robin manner. Weights are

used to allow some classes to send more or less packets than

other classes.

The SP scheduling policy also classifies packets into classes

like DRR but always serves the packet of the highest priority

class available.

5.1 Non-QoS configuration

We first describe the non–QoS-specific aspects of the exper-

iments, leaving the QoS-specific ones, such as PacketEcon-

omy, the DRR, and the SP configurations, for the end of the

section.

5.1.1 All cases
The following aspects are taken into consideration in the

experimental setup, irrespective of the composition of flow

types (eg, TCP or UDP).

Layer 2 setup: The network consists of a dumbbell topol-

ogy with N hosts on each side (2*N total hosts) and 2 routers

(R1 and R2) between them. The hosts on the left are the
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sending end points, and the hosts on the right are the receiving

end points. Each host is connected via Ethernet with exactly

one link to either R1 or R2. The connections between end

points and routers, as well as the single connection between

the 2 routers, are full duplex 10 Mbps with 50 nanoseconds

propagation delay and 0% packet error rate. Each host uses

either a TCP- or a UDP-based application through which it

communicates with its peer.

Simulator setup: The total simulation execution time is 160

simulated seconds with a warm-up of 110 seconds (during

which no statistics are recorded to allow flows to stabilize).

Each experiment is executed in 5 repetitions with different

random number generator seeds. The random number gen-

erator affects the first packet send time for both UDP and

TCP flows (a normal distribution N(10s, 0.1s)), the sending

time interval for the Constant Bit Rate UDP flows (a nor-

mal distribution N(30ms, 1ms)), and when using RED on the

queue Q, the admittance of incoming packets (due to the prob-

abilistic nature of RED). This randomness is used to avoid

synchronization and bias problems as much as possible.

Queue parameters: Each possible combination of the fol-

lowing parameters is examined, in 5 repetitions as mentioned

above.

• Router queue Q parameters:

a. Maximum Size (|Q|): 100 packets

b. Admission policy: DropTail, RED (wq = 0.002,

minth = 10, maxth = 100, maxp = 0.02).

5.1.2 Flow composition cases
Additionally, we examine 3 flow composition cases: one in

which only TCP flows are present, one in which only UDP

flows are present, and one in which both TCP and UDP flows

coexist.

The TCP-only flows case: In each experiment the number

of flows NTCP = N is 10, and all the flows use the same TCP

congestion avoidance algorithm (Reno), with increased ini-

tial window support enabled, TCP window scaling support

enabled, TCP delayed acknowledgements (ACKs) support

enabled, selective acknowledgements (SACK) support dis-

abled, the TCP Nagle algorithm disabled, and an advertized

window of 300 000 bytes.

Since TCP flows are typically more complex than UDP

flows, we have examined performance in more detail espe-

cially for the TCP-only flows case. Thus, each possible

combination of the following parameters is examined, in 5

repetitions as mentioned above:

• TCP Maximum Segment Size (MSS): 1400, 512, 200 bytes

• Packet error rate (packet loss due to transmission, set on

the channel between the 2 routers [R1 and R2]): 0%, 1%,

and 2%
• Additional delay (set on the channel between the 2 routers

[R1 and R2], used to modify the round trip time of the

flows): 50 nanoseconds and 1, 20, 30 milliseconds.

The UDP-only flows case: In each experiment all the flows

are of Constant Bit Rate type and use the same send interval

and payload size. The number of flows NUDP = N for each

unique send interval and payload size combination is calcu-

lated as the number of flows required to achieve a given cumu-

lative bandwidth requirement. Two subcases are created: one

where the cumulative bandwidth requirements marginally

pass the bottleneck router bandwidth, namely, 10 Mbps, and

one where the cumulative bandwidth requirements are 150%
of the bottleneck router bandwidth, i.e., 15 Mbps. In both

cases all protocol overheads are taken into account when cal-

culating the number of flows. The former is used to assess

performance at full queue capacity and the latter to assess

performance under overload.

The TCP and UDP flows case: This case combines the

TCP-only and UDP-only cases. As in the TCP-only case, the

number of TCP flows NTCP is constant, but half of what it

was in the TCP-only case (5 instead of 10), while the rest of

the TCP-only case parameters are used as before, including

the 2 subcases for the MSS value. The combinations for the

UDP flows include all the send interval and payload size com-

binations of the UDP-only case, but the 2 subcases for the

cumulative bandwidth requirements are reduced to one where

the bandwidth requirements are 50% of the bottleneck router

bandwidth, i.e., 5 Mbps.

5.2 QoS configuration

In the following paragraphs the QoS-specific aspects of the

experiments are described.

5.2.1 Layer 2 setup
When PacketEconomy is enabled and therefore trading

between packets is performed, it is only performed on the

egress queue Q of the R1→R2 connection.

5.2.2 Queue parameters
In addition to the non-QoS queue parameters, an extra param-

eter, the priority policy is examined as a part of the QoS con-

figuration. The priority policy may be PacketEconomy (with

1 trading round per served packet), DRR in the TCP-only

cases (independent levels used = {N, ⌈N/2⌉,⌈N/4⌉}),

or SP in the UDP-only cases (independent levels used

= {N, ⌈N/2⌉, ⌈N/4⌉}). In the TCP and UDP flows case, a

hierarchical structure is used where QoS for TCP flows is per-

formed via DRR and QoS for UDP flows via SP, and both

policies are then merged via a secondary SP policy that gives

absolute priority to UDP flows. A classifier is present before

the DRR and SP queues that classifies the incoming pack-

ets. The number of independent levels refers to the number of

classes used by the classifier, with a higher number meaning a

finer-grained differentiation between flows at a cost of higher

memory requirements.
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5.2.3 Flow composition cases
In all flow composition cases, the priority of the TCP and

UDP flows is independent, i.e., the TCP and UDP flows have

priorities that span the [0,1] range independently. This has

been chosen so that the full range of priority values for both

TCP and UDP flows can be examined.

5.2.4 Flow priority
When assessing performance with a priority policy (Pack-

etEconomy, DRR, and SP), each flow is assigned a priority

value p. In our experiments p∈[0,1], where p = 0 corresponds

to the lowest priority and p = 1 to the highest priority. This

value is used directly in SP as the priority and in DRR as

the weight, but PacketEconomy needs the a, b, and c param-

eters of the utility function to be defined. Thus, we have

defined functions mapping the priority value p to the a (Ca,

Equation (6)), b (Cb, Equation (5)), and c (fixed) parameters

for PacketEconomy use.

This mapping function depends on an estimate of the base-

line delay dbl, which corresponds to the experienced delay of

a packet without a priority value, i.e., it is not affected by a

priority policy. This dbl value can be continuously updated

by the network stack of each end point as the flow trans-

mits and receives data; however, in our experiments dbl has

been precalculated for each case, by executing a correspond-

ing experiment for each case with the priority policy disabled

and measuring the median delay of all the flows.

Additionally, a spread parameter tuple (sl, su) is used to

configure the intensity of the difference between the highest

and lowest priority flows. In essence, it defines the range of

values the t0 parameter of the utility function will receive.

Specifically, sl and su are factors that define the highest pri-

ority flow’s maximum delay t0 and the lowest priority flow’s

maximum delay t0 given a baseline delay dbl. The intermedi-

ate flows’ maximum delays are linearly interpolated between

those 2 extremes.

Priorities for flows are meant to be more static, typically

defined once and infrequently changed, as an expression of

relative importance and QoS requirements of each flow. They

may also be predefined for select application types on the

basis of common knowledge guidelines, for example, all VoIP

flows should get high priority. The main parameter a user

needs to configure is the (sl, su) spread parameter, which

essentially controls the amount of degradation lower priority

flows will make to be able to satisfy higher priority flows.

Given constraints on the acceptable delay for all flows, this

parameter can also be automatically controlled adaptively.

We use the Yt0 function (Equation (4))

Yt0 (p, dbl, sl, su) = dblsl + (1 − p)(dblsu − dblsl),with

p ∈ [0, 1], sl, su ⩾ 0, dbl > 0
(4)

to perform a linear interpolation between the maximum delay

dblsu corresponding to p = 0 and the minimum delay dblsl
corresponding to p = 1.

We then use the Cb function (Equation (5))

Cb(p) = 1 + (10p)2,with p ∈ [0, 1] (5)

to calculate a flow’s utility function b parameter value. Other

forms of Cb have also been found to work well, but this one

performed consistently well in all the experimental cases.

Finally, we use the Ca function (Equation (6))

Ca(p, dbl, sl, su, c) = Cb(p)∕(Yt0 (p, dbl, sl, su)c), with p ⩾ 0

(6)

to calculate a flow’s utility function a parameter value.

In our experiments we examine the performance for 2

spread parameter tuple cases (sl, su) ∈ {(1, 2), (1, 4)} in

combination with all the previously described parameters and

cases.

5.3 Collected measurements

For each combination we collect statistics covering both the

network-level and the game-theoretic behavior of the flows.

The network-level statistics are the typical ones used to char-

acterize flow behavior and are commonly used in other works

as well29,30:

• Throughput per priority level, a network-level measure-

ment, which is often of high importance in measuring TCP

flow performance.

• End-to-end delay (or latency) per priority level, a

network-level measurement, which is often used in

delay-sensitive UDP flows to gauge performance.

• Packet drop per priority level, a network-level measure-

ment, which is an indicator of both scheduling quality and

network efficiency, in wasted effort spent on eventually

dropped packets.

• Utility (packet value dp, balance mp, and total dp + mp),

a game-theoretic measurement, which is used to gauge

whether the game-theoretic mechanism is incentivizing

flows to participate in PacketEconomy (see Section 7.1 for

more details on this issue).

A total of 11 610 experiments have been executed, as

2322 parameter combinations in 5 repetitions to assess perfor-

mance. Additional experiments have been executed to deter-

mine the baseline delay for each experimental case as well

as a much larger number of experiments during the develop-

ment of the system. Because of space considerations, we have

selected to present the above described representative subset

of cases.

5.4 Evaluation

We measure the performance of the PacketEconomy by com-

paring it to the performance of DRR and SP. The defining

characteristics of the DRR policy are the number of classes

and the weight of each class, while in SP the priority of each

flow is the only parameter. Regarding the number of classes,
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we have considered cases where the number of DRR classes

is identical to the number of flows, half of the number of

flows, and a quarter of the number of flows (rounding up when

the fraction is nonintegral), as described in Section 5.2.2. For

example, in a case where we have 68 UDP flows, the DRR

cases evaluated are ones with 68, 34, and 17 classes.

The ideal case is considered to be the one where a DRR

queue policy is used, which has one independent queue for

each flow (i.e., each flow belongs to a separate class). The

class of each flow coincides with the priority of the flow

(linearly scaled).

6 EXPERIMENTAL RESULTS

In this section the results of the experiments are presented,

organized on a flow composition case basis. For each flow

composition case (TCP-only, UDP-only, and TCP and UDP),

the relevant metrics are presented. In particular, for TCP flows

throughput and packet drop percentage are presented, while

for UDP flows end-to-end delay and packet drop percentage

are presented. Each diagram contains both the PacketEcon-

omy results as well as the corresponding DRR (for TCP

flows) or SP (for UDP flows) results, to allow for comparison

between them.

Overall, the results confirm that it is possible, using appro-

priate utility function parameters, to control the distribution

of throughput for TCP flows and delay for UDP flows mean-

ing that PacketEconomy is effective as a QoS mechanism.

The distribution of throughput and delay is not a linear func-

tion of priority; however, it is consistent in the sense that an

increase (decrease) in priority leads to an increase (decrease)

of throughput and to a decrease (increase) in end-to-end delay.

In these experiments only one trading round was used per

packet served; however, multiple such rounds can be exe-

cuted. The result would be a more aggressive distribution of

throughput and delay (everything else being equal), and thus,

if a lower minimum delay or a higher maximum throughput

is required without changing the utility function parameters,

the trading rounds can be increased.

6.1 The TCP-only flows case

In this case we are concerned with flow throughput and

packet drops.

6.1.1 Base case
We will initially present the results of the base case where the

TCP flows have a 1400 byte MSS and the channel between R1

and R2 has 0% packet error rate and 50 nanoseconds delay.

For the case where a DropTail bottleneck router queue is

used, the results for throughput are presented in Figure 7A

and for packet drop percentage in Figure 7B. PacketEconomy

has similar performance to DRR as far as packet drop is con-

cerned. In the case of throughput, PacketEconomy displays

a nonlinear, but smooth distribution, while DRR with N and⌈N/2⌉ levels is largely linear, however DRR with ⌈N/4⌉ loses

this property. We have seen from other experiments (outside

the presented subset) that it is possible to select utility func-

tions in such a way that the distribution is linear, however, this

impacts the distribution of throughput and end-to-end delay

in the TCP and UDP flows case. Also, we considered it use-

ful to use the same utility function creation scheme for all

flow composition cases to allow for easier and more objective

comparison of performance.

Correspondingly, for the case where a RED bottleneck

router queue is used, the results for throughput and for packet

drop percentage show that the use of the RED admission pol-

icy makes the distribution of throughput with PacketEconomy

more linear, because of limiting higher priority flows from

getting a higher proportion of throughput.

FIGURE 7 TCP-only flows case results per priority level with a DropTail bottleneck router queue, MSS of 1400 bytes, 0% packet error rate, and 50-ns delay

between R1 and R2. Throughput increases with priority, as expected, and 2 spread-c combinations distribute throughput more aggressively than the other 2.

Packet drop is low ( < 1%) and approximately the same for all priority levels. DRR indicates Deficit Round Robin; MSS, Maximum Segment Size; QoS,

quality of service; TCP, Transmission Control Protocol
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Deficit Round Robin is not affected significantly by RED,

and the comments on DRR’s behavior under DropTail hold

for RED as well. Packet drop percentage with RED is, as

expected, higher for both PacketEconomy and DRR, but

< 2%, which perform almost identically in this respect and

are approximately the same for all priority levels.

6.1.2 Effects of MSS and R1and R2channel packet error
rate and delay
Changing the TCP MSS between the values examined

(1400, 512, and 200 bytes) had very little effect on both

throughput and dropped packet percentage, irrespective of R1

and R2 channel packet error rate and delay, with a smaller

MSS leading to slightly less throughput because of increased

TCP header overheads.

On the other hand, throughput was affected by both R1 and

R2 channel packet error rate and delay. Both PacketEconomy

and SP were affected identically; thus, the effects are due

to the TCP flow control and not PacketEconomy. With 0%
packet error rate, the throughput was not significantly affected

for delay ⩽10 milliseconds, slightly affected by compressing

the distribution for delay = 20 milliseconds and failing to

distribute the throughput for delay ⩾30 milliseconds. With

1% packet error rate, the previous thresholds became ⩽1,

= 10, and⩾20 milliseconds correspondingly. Finally, with 2%
packet error rate, the distribution was compressed slightly for

delay ⩽1 millisecond, and distribution failure was present for

delay ⩾10 milliseconds. In general, when the packet error rate

is reasonable, typically < 2% and the additional channel delay

not too high, typically⩽30% of unmodified one-way trip time,

both PacketEconomy and SP continue to be able to distribute

throughput effectively.

6.2 The UDP-only flows case

In this case we are concerned with flow end-to-end delay and

packet drops. Because of the large number of UDP flows used

(68-194 with 100% bandwidth requirements and 102-290

with 150% bandwidth requirements), we only present 10 rep-

resentative priority levels in the figures of this section, to

preserve legibility. Both PacketEconomy and SP behave rel-

atively smoothly with respect to priority levels, and as a

result, omitting some intermediate flow priority levels does

not significantly impact the overall results.

For the case where a DropTail bottleneck router queue

is used, the results for end-to-end delay are presented in

Figure 8. PacketEconomy has similar performance to SP as far

as packet drop is concerned: In both cases the packet drop per-

centage is approximately the same for all priority levels and

decreases as the number of flows decreases and as the size of

the payload increases (≃6.25% [120 bytes, 194 flows], ≃4%

[240 bytes, 120 flows], and ≃2.5% [480 bytes, 68 flows]).

In the case of end-to-end delay, both PacketEconomy and

SP display a nonlinear but smooth distribution. The number

of SP levels does not affect performance measurably here. It

can be seen that PacketEconomy distributes delay in a more

equitable manner than SP, which penalizes the low-priority

flows disproportionately. Our solution prevents this problem

by disallowing starvation of the low-priority flows through

the application of the packet utility function deadline (t0). In

both cases, the number of flows and the size of the payload do

not affect the basic delay distribution, although it is obvious

that smaller payloads allow for a lower minimum delay.

End-to-end delay for the RED bottleneck router queue with

100% bandwidth requirements is almost identical to the Drop-

Tail queue case shown in Figure 8. Packet drop percentage

accordingly mirrors the DropTail case.

End-to-end delay for both DropTail and RED bottleneck

router queues with 150% bandwidth requirements is also the

same as in the case with 100% bandwidth requirements.

On the other hand, it can be seen that, as expected, when

the throughput requirements of the flows are higher than the

available bandwidth of the bottleneck router, packet drops

increase and PacketEconomy has similar performance to

SP. More specifically, with flows requesting 150% of the

FIGURE 8 UDP-only flows case results for median end-to-end delay per priority level with a DropTail bottleneck router queue with 100% bandwidth

requirements. End-to-end delay decreases with priority, as expected, and 2 spread-c combinations distribute delay more aggressively than the other 2. Note:

the y-axis is logarithmic. SP indicates Strict Priority; QoS, quality of service; UDP, User Datagram Protocol
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available bandwidth, the packet drop percentage is approxi-

mately 38% and approximately the same for all priority levels

and payload sizes, albeit showing slightly higher variability

with RED versus DropTail.

6.3 The TCP and UDP flows case

In this case we are concerned with throughput for the TCP

flows, end-to-end delay for the UDP flows, and packet drop

percentage for both. As in the previous section, because of the

large number of UDP flows used (34-77 with 50% bandwidth

requirements), we only present 10 representative priority lev-

els in the figures of this section to preserve legibility.

6.3.1 TCP flow measurements
For the case where a DropTail bottleneck router queue is used,

the results for TCP throughput are presented in Figure 9. In

this case, PacketEconomy displays a nonlinear but smooth

distribution while DRR with N levels is largely linear; how-

ever, DRR with ⌈N/2⌉ or ⌈N/4⌉ levels loses this property.

Packet drop is approximately the same for all priority levels

for both PacketEconomy and DRR/SP. For PacketEconomy,

it is between 0.5% and 2%, decreasing as the number of UDP

flows decreases and as the size of the UDP payload increases.

For DRR/SP, packet drop percentage is very low, approxi-

mately 0.07%. When using the RED admission policy instead

of DropTail, the results are very similar to the DropTail case

with different priority levels leading to smaller differences

in throughput and slightly larger variability in packet drop

percentages.

We have seen from other experiments (outside the pre-

sented subset) that it is possible to select utility functions in

such a way that the distribution is linear, however, this impacts

the distribution of throughput and end-to-end delay in the

TCP and UDP flows case. Also, we considered it useful to use

the same utility function creation scheme for all flow compo-

sition cases to allow for easier and more objective comparison

of performance.

6.3.2 UDP flow measurements
For the case where a DropTail bottleneck router queue is

used, the results for UDP end-to-end delay are presented in

Figure 10. In this case, PacketEconomy distributes end-to-end

FIGURE 9 TCP and UDP flows case results for median TCP throughput per priority level with a DropTail bottleneck router queue. Throughput increases

with priority, as expected, but 2 spread-c combinations distribute throughput less aggressively at high priority values than the other 2. DRR indicates Deficit

Round Robin; QoS, quality of service; SP, Strict Priority; TCP, Transmission Control Protocol; UDP, User Datagram Protocol

FIGURE 10 TCP and UDP flows case results for median UDP end-to-end delay per priority level with a DropTail bottleneck router queue. Delay decreases

with priority, as expected, but 2 spread-c combinations distribute delay more aggressively than the other 2. Note: the y-axis is logarithmic. DRR indicates

Deficit Round Robin; QoS, quality of service; SP, Strict Priority; TCP, Transmission Control Protocol; UDP, User Datagram Protocol
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delay smoothly with higher priority flows being delayed less

than lower priority flows, but nonlinearly. Deficit Round

Robin distributes delay more linearly, and the number of lev-

els does not seem to affect the resulting delay. Packet drop is

approximately the same for all priority levels for both Pack-

etEconomy and DRR/SP. For PacketEconomy, it is between

0.8% and 2.5%, decreasing as the number of UDP flows

decreases and as the size of the UDP payload increases. For

DRR/SP, packet drop percentage is very low, approximately

0.03%. The UDP end-to-end delay for the RED bottleneck

router queue is similar to the DropTail counterpart shown in

Figure 10. However, the packet drop percentage for the RED

bottleneck router queue is approximately 2.5% and does not

significantly change with UDP payload sizes.

7 GAME-THEORETIC ASPECTS

In this section the game-theoretic aspects of PacketEconomy

are discussed.

7.1 Incentive to participate

The first issue is whether flows have an incentive to par-

ticipate in PacketEconomy, i.e., the property of individual

rationality, something that has been also investigated in the

work of Efraimidis and Koutsiamanis.15 According to that

previous work, because of trades being Pareto improvements

on each trading packet’s benefit, we concluded that there is a

Nash equilibrium in which all flows participate in the scheme.

The incentive to participate is important since flows are

free to choose not to participate in PacketEconomy. Flows

having an incentive to participate in PacketEconomy leads

rational flows (or typically the users that configure them) to

want to participate in PacketEconomy of their own free will

since they have advantages to gain from their participation. In

the following presentation of results, we use the percentage

of total benefit gained when participating versus not partici-

pating as a metric of whether flows have an incentive to use

PacketEconomy. When this value is ⩾100% for a flow, then it

gains more benefit, i.e., better user experience, when it partic-

ipates in PacketEconomy than when it does not, thus it should

rationally choose to use PacketEconomy, driving its adoption.

The following results illustrate that individual rationality is

present in the real network implementation of PacketEcon-

omy as well, with the caveat that in practice only a subset of

flows have been tested for this property.

Specifically, this property requires that an individual, multi-

ply replicated experiment needs to be performed for each flow

for which its incentive to participate needs to be established.

Because of the large number of flows used, and because util-

ity functions are not arbitrary but vary smoothly from priority

level to priority level, we have performed and we only present

5 representative priority levels in the figures of this section.

Therefore, we expect that omitting some intermediate flow

priority levels does not significantly impact the overall results.

7.1.1 The TCP-only flows case
The incentive to participate in the TCP-only flows case is pre-

sented in Figure 11, and as it can be seen, all examined flows

have a strong incentive to participate in both DropTail and

RED bottleneck router queue cases.

Effects of MSS and R1 and R2 channel packet error
rate and delay The MSS has no bearing on the incentive

to participate. Also, when the packet error rate is 0%, incen-

tive is maintained for all examined values of additional delay

with both DropTail and RED admission policies. On the

other hand, with DropTail, once the packet error rate becomes

1%, the incentive is lost for delay ⩾20 milliseconds, while

with 2% packet error rate it is lost for delay ⩾1 millisecond.

The incentive to participate is even lower with the RED

admission policy.

FIGURE 11 TCP-only flows case results per priority level for incentive to participate as a percentage of total benefit gained when participating versus not

participating. In all cases it is over 100%, and as a result, there is always an incentive to participate in PacketEconomy. Note: the y-axis is logarithmic. Qos

indicates quality of service; TCP, Transmission Control Protocol; RED, Random Early Detection
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Effectively, since the flow utility functions model delay and

not packet loss, PacketEconomy miscalculates the expected

utility of packet delivery under too much packet loss. We

expect that this issue can be solved by adding a parameter to

represent this variable into the utility function, however, we

consider this to be future work.

7.1.2 The UDP-only flows case
The incentive to participate in the UDP-only flows case is

similar to the TCP-only flows case in that it can be seen that

all examined flows have a strong incentive to participate in

the DropTail bottleneck router queue case for all the different

UDP payload sizes examined.

The incentive to participate for the RED bottleneck router

queue with 100% bandwidth requirements is almost identical

to the DropTail queue case.

The incentive to participate for both DropTail and RED bot-

tleneck router queues with 150% bandwidth requirements is

similar to the DropTail queue with 100% bandwidth require-

ments case and is also always over 100%.

7.1.3 The TCP and UDP flows case
The incentive to participate for TCP and UDP flows in the

mixed flow types case is similar to the incentive the flows have

in the TCP-only and the UDP-only case and is almost always

over 100% providing an incentive to participate in PacketE-

conomy. In some rare cases the incentive is slightly lost. We

have found this to happen occasionally with RED queues and

higher priority TCP flows.

One example case is for the highest priority TCP flows,

when using RED, having the UDP payload is 240 bytes and

60 UDP flows and when the (sl, su) spread parameter is (1, 2).

We have concluded that this happens because of the larger

error in estimation of delivery time with larger size high prior-

ity packets. We expect that because of the dynamic nature of

the network, flows will sometime misestimate their delivery

times and as a result, affect their ask or bid prices. However,

we expect these fluctuations to cancel out on average.

7.2 Packet size variability

In our previous work,15 all packets were assumed to be of

identical size. In this more realistic implementation, pack-

ets have different sizes in some cases, and this means that a

trade may affect in-between packets’ queuing time. Initially,

in our experiments we performed trades irrespective of the

packet size of the 2 trading packets. This meant that when a

larger buyer packet traded positions with a smaller seller one,

in-between packets were also affected, since their queuing

time would increase. Conversely, with a smaller buyer packet

and a larger seller one, the in-between packets would see a

decrease in queuing time. The only exception was when the

trading packets are adjacent. We were mainly concerned by

the problem the first case introduces since in the second case

the in-between packets are favored.

There were a number of alternative approaches to this

issue. The ideal one would be to incorporate the price of

extra delay of each in-between packet into the ask price and

then distribute the funds accordingly to all the in-between

packets. However, this would significantly increase computa-

tional complexity, completely remove locality of trades, and

preclude easy parallelization. Therefore, a compromise was

sought in which we disallowed any trades between larger

buyers and smaller sellers. Although this approach some-

what decreased the number of trades performed and as a

result diminished the QoS effects, the results were neverthe-

less acceptable in both network and game-theoretic terms.

Additionally, the QoS effects can be recovered by increasing

the number of trading rounds, with the corresponding impact

on computational complexity (a constant factor equal to the

number of trading periods).

Another approach would be to create (a small number

of) separate queues for different packet size ranges. This

would moderate the effects of trades on in-between packets

by putting an upper bound on the extra delay incurred when

different size packets trade, although it would still prevent

trades from always being Pareto improvements. However, we

estimate that this approach would also decrease trades per-

formed by creating more but smaller-sized packet queues,

which as before, can be mitigated by increasing the number

of trading rounds, with the corresponding impact on compu-

tational complexity. Additionally, it would create the problem

of deciding in which manner packets from the different queues

will be serviced, effectively wrapping PacketEconomy in a

higher-level multi-queue scheduler.

7.3 Truthfulness of packet utility function

Another useful property of game-theoretic models is for them

to provide incentive for players to report their utility function

truthfully, since this defines the ask and bid prices. In mech-

anism design, a process is incentive-compatible if all of the

participants fare best when they truthfully reveal any private

information asked for by the mechanism, however, there are

different degrees of incentive-compatibility:

• Dominant Strategy Incentive Compatibility: truth-telling is

a dominant strategy, also known as Strategyproofness.

• Incentive Compatibility (a weaker notion): truth-telling is a

Bayes-Nash equilibrium, i.e., it is best for each participant

to tell the truth, provided that others are also doing so.

In PacketEconomy the players are the flows that define the

packet utility functions, and the private information aimed to

be truthfully revealed is the set of utility function parameters.

Preliminary experiments indicate that the flows do not gain

by reporting false utility functions, because changing the total

utility a packet receives (the benefit) is the sum of 2 quan-

tities with an inverse relation: Increasing the packet value
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incurs higher budgetary costs, and increasing the accumu-

lated budget negatively impacts packet value. In other words,

the mechanism may be incentive-compatible. However, since

there is a spread between ask and bid prices but no agent to

minimize this spread as in stock exchanges, it is conceivable

that to some limited extent flows can manipulate their utility

function parameters to be able to gain added benefit. More-

over, this manipulation is harder to perform for intermediate

priority flows and easier for higher and lower priority ones

since the ask and bid prices are determined identically. Thus,

intermediate flows will tend to cancel out gains from sells (or

buys) with losses from buys (or sells). In any respect, further

investigation is required for this issue to be fully resolved.

7.4 Price of anarchy/stability

A notion that is also interesting to investigate in this context

is the Price of Anarchy1,2 and its related Price of Stability.31,32

These values quantify the relation between the efficiency of

the outcome produced by a system in which the players behave

individually, selfishly, and in a decentralized manner, such as

in the case of PacketEconomy, and the efficiency of the out-

come produced by a centralized decision maker. Both require

a means of quantifying the measure of efficiency an outcome,

called a welfare function. In our case, a natural candidate

would be the sum of the benefits of the flows, called the

utilitarian function. Using the welfare function, the Price of

Anarchy is the ratio of the value of the welfare function for the

optimization problem solution (centralized decision maker)

over the worst value of the welfare function for the selfish and

decentralized solutions. Correspondingly, the Price of Stabil-

ity is the ratio of the value of the welfare function for the

optimization problem solution (centralized decision maker)

over the best value of the welfare function for the selfish and

decentralized Nash equilibrium solution.

The Price of Anarchy and Price of Stability have been inves-

tigated extensively in theoretical models, but a real network

presents significant problems to overcome in calculating exact

values. More specifically, although calculating the welfare

function for any of the experimental case results is easily

done, comparing this value to an optimal solution is harder,

since deciding what this optimal solution would be is non-

trivial. For example, fixed size router queues, probabilistic

admission policies (eg, RED), adaptive flows that are affected

by feedback (eg, TCP), and the interaction between flow types

and packet sizes (eg, UDP packets tend to interfere with TCP

flow control) all make a theoretical analysis much harder.

Judging from the network-centric results, we can see that both

throughput and delay are being distributed in accordance to

priority and there does not seem to be any significant loss

of overall efficiency (eg, the sum of flow throughputs with

PacketEconomy is equal to the sum of flow throughputs using

DRR, just differently distributed). We expect that it would

be possible in a future work to examine a case with a cen-

tralized scheduler that, taking into account each flow’s utility

functions, decides which packets to deliver and in what man-

ner. However, this would just produce an upper bound on

the welfare value, since it is not necessary that the solu-

tion provided is implementable in networking terms or that it

produces the calculated welfare, since the above mentioned

networking concerns are not taken into account.

7.5 Relation to smart market

In the seminal work of MacKie-Mason,33 they propose a gen-

eralized Vickrey auction to be able to provide QoS for packets

in queues. The main disadvantage of that approach is the com-

putational complexity it induces, since a full auction needs to

be performed for each packet served. While not equivalent,

our approach can be seen as an approximation of the smart

market mechanism, where increasing the number of trading

periods improves the approximation.

8 CONCLUSIONS AND FUTURE WORK

In this work we presented a realistic implementation of Pack-

etEconomy, a distributed QoS mechanism for network pack-

ets, within the OMNET++ discrete-event simulator and using

the INET network simulation library. With this work we

aim to provide high performance, network-wide, fine-grained,

user-controlled QoS. We have presented the complexities that

needed to be overcome and the required adaptations made to

the theoretical PacketEconomy model for a realistic environ-

ment. We then performed extensive experimental evaluation

of the implementation and presented characteristic results in

comparison to the DRR and SP QoS policies.

Possible extensions of this work comprise a larger num-

ber of scenarios to be examined, with more complex network

topologies and flow compositions, as well as adaptivity being

used in end points to auto-configure utility function param-

eters. We also envision PacketEconomy’s applicability in

alternate contexts, such as being used in delay-tolerant net-

works as a QoS policy. In particular, when fast transmission

is possible, the faster and more efficient PacketEconomy can

be used, while when computational complexity is not at a

significant premium and slower transmission is only possi-

ble, an auction-based QoS policy (such as in the work of

MacKie-Mason33) can be used instead. An additional alter-

nate context concerns Internet of Things networks. Since

PacketEconomy uses a notion of utility, which encodes a

time-varying quantity, it may be useful for Internet of Things

networks wherein communication comes at a premium in both

terms of energy and computational complexity. By being able

to more accurately express the value of a packet as a func-

tion of time may allow the network to make better service

decisions.

Overall, we consider our approach to be both theoretically

well-founded, as well as practically applicable, a claim that is

also supported by the experimental results.
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